Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*
نویسندگان
چکیده
Arachidonic acid (ARA) is essential in felines because conversion of dietary linoleic acid (LA) to ARA is rate-limited by low Δ6-desaturase. Dietary γ-linolenic acid (GLA) may serve as an ARA precursor by-passing this initial rate-limiting step. This possibility was investigated using twenty-six adult female domestic shorthair cats divided into three groups and fed on complete and balanced diets containing high GLA (GL), high LA (HL) or low LA (LL, control) diets, for 300 d prior to ovariohysterectomy. Plasma was obtained 1-2 d before surgery and uterine, ovarian and associated adipose tissues were reserved for lipid analysis. Fatty acid profiles of the plasma phospholipid (PL) fractions and adipose lipids were performed. In the GL group, plasma and uterine tissue PL were significantly enriched in GLA, di-homo GLA (DGLA) and ARA compared with control. However, ovarian and adipose tissue PL were only enriched in DGLA. Enrichment of uterine tissues with DGLA and ARA probably supplies the essential eicosanoid precursors for reproduction when GLA is fed consistently with an active Δ5-desaturase in uterus. By contrast, this enzyme appears less active in ovary because ARA was not higher compared with control. Earlier reports concluded that ARA was not necessary for fertilisation (an ovarian function), but required for successful pregnancy and reproduction (a uterine function). Adipose tissue DGLA may be a reservoir for ARA synthesis by other tissues upon mobilisation. Dietary GLA may meet feline ARA requirements in the absence of an animal-based preformed source of ARA.
منابع مشابه
Plasminogen activator inhibitor-1 and relations to fatty acid composition in the diet and in serum cholesterol esters.
High plasminogen activator inhibitor (PAI)-1 levels and poor dietary fat quality are potential risk factors for cardiovascular disease. The aim was to investigate the cross-sectional associations between PAI-1 activity and dietary nutrient intake, focusing on fat quality, in a population-based study of 871 men aged 70 years. The relationship between PAI-1 and the fatty acid composition in serum...
متن کاملIsolation and characterization of a Delta 5-fatty acid desaturase from Caenorhabditis elegans.
Arachidonic acid and eicosapentaenoic acid are important precursors for the production of prostaglandins and other hormone-like eicosanoid molecules. These fatty acids are synthesized by animals by elongating and desaturating precursor fatty acids such as linoleic acid (18:2Delta9,12) and alpha-linolenic acid (18:3Delta9, 12,15). We have identified a Delta5 fatty acid desaturase gene (fat-4) fr...
متن کاملSignificant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates.
Dietary arachidonic acid (20:4n-6) utilization in-vivo for carbon recycling into de-novo lipogenesis and conversion to n-6 long chain polyunsaturates was investigated in baboon neonates using [U-(13)C]20:4n-6. Neonates consuming a formula typical of human milk received a single oral dose of [(13)C]arachidonic acid in sn-2 position of either triglyceride or phosphatidylcholine at 18-19 days of p...
متن کاملDifferential metabolism of dihomo-gamma-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: implications for cellular synthesis of prostaglandin E1 and prostaglandin E2.
Prostaglandin (PG) E(1) has been shown to possess anti-inflammatory properties and to modulate vascular reactivity. These activities are sometimes distinct from those of PGE(2), suggesting that endogenously produced PGE(1) may have some beneficial therapeutic effects compared with PGE(2). Increasing the endogenous formation of PGE(1) requires optimization of two separate processes, namely, enri...
متن کاملIdentification and functional characterization of the moss Physcomitrella patens delta5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis.
The moss Physcomitrella patens contains high levels of arachidonic acid and lesser amounts of eicosapentaenoic acid. Here we report the identification and characterization of a delta5-desaturase from P. patens that is associated with the synthesis of these fatty acids. A full-length cDNA for this desaturase was identified by data base searches based on homology to sequences of known delta5-desa...
متن کامل